Recurrence Relations and Splitting Formulas for the Domination Polynomial

نویسندگان

  • Tomer Kotek
  • James Preen
  • Frank Simon
  • Peter Tittmann
  • Martin Trinks
چکیده

The domination polynomial D(G, x) of a graph G is the generating function of its dominating sets. We prove that D(G, x) satisfies a wide range of reduction formulas. We show linear recurrence relations for D(G, x) for arbitrary graphs and for various special cases. We give splitting formulas for D(G, x) based on articulation vertices, and more generally, on splitting sets of vertices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the domination polynomials of non P4-free graphs

A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...

متن کامل

TOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS

Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...

متن کامل

Bautin Ideals and Taylor Domination

We consider families of analytic functions with Taylor coefficients-polynomials in the parameter λ: fλ(z) = ∑∞ k=0 ak(λ)z k, ak ∈ C[λ]. Let R(λ) be the radius of convergence of fλ. The “Taylor domination” property for this family is the inequality of the following form: for certain fixed N and C and for each k ≥ N + 1 and λ, |ak(λ)|R(λ) ≤ C max i=0,...,N |ai(λ)|R(λ). Taylor domination property ...

متن کامل

Eigenstructure of Order-One-Quasiseparable Matrices. Three-term and Two-term Recurrence Relations

This paper presents explicit formulas and algorithms to compute the eigenvalues and eigenvectors of order-one-quasiseparable matrices. Various recursive relations for characteristic polynomials of their principal submatrices are derived. The cost of evaluating the characteristic polynomial of an N × N matrix and its derivative is only O(N). This leads immediately to several versions of a fast q...

متن کامل

Two variable orthogonal polynomials and structured matrices

We consider bivariate real valued polynomials orthogonal with respect to a positive linear functional. The lexicographical and reverse lexicographical orderings are used to order the monomials. Recurrence formulas are derived between polynomials of different degrees. These formulas link the orthogonal polynomials constructed using the lexicographical ordering with those constructed using the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2012